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Abstract

Purpose – The purpose of this paper is to present an adaptive finite element procedure that improves
the quality of convection dominated mid-ocean ridge (MOR) and subduction zone (SZ) simulations in
geodynamics.

Design/methodology/approach – The method adapts the mesh automatically around regions of
high-solution gradient, yielding enhanced resolution of the associated flow features. The approach
utilizes an automatic, unstructured mesh generator and a finite element flow solver. Mesh adaptation
is accomplished through mesh regeneration, employing information provided by an
interpolation-based local error indicator, obtained from the computed solution on an existing mesh.

Findings – The proposed methodology works remarkably well at improving solution accuracy for
both MOR and SZ simulations. Furthermore, the method is computationally highly efficient.

Originality/value – To date, successful goal-orientated/error-guided grid adaptation techniques
have, to the knowledge, not been utilized within the field of geodynamics. This paper presents the first
true geodynamical application of such methods.
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1. Introduction
Over recent decades, adaptive grid techniques (Babuska and Rheinbolt, 1978; Lohner
et al., 1985; Peraire et al., 1987) have been widely employed by the engineering
community, in areas ranging from compressible aerodynamics (Hassan et al., 1995) to
incompressible flow and heat transfer problems (Pelletier and Ilinca, 1995; Nithiarasu
and Zienkiewicz, 2000; Mayne et al., 2000). However, until recently (Davies et al., 2007),
grid adaptivity had not been applied within the field of geodynamics, a branch of
geophysics concerned with measuring, modeling, and interpreting the configuration
and motion of Earth’s crust and mantle. This is surprising, since the method provides a
suitable means to solve many of the complex problems currently encountered in the
field. The motivation behind this study, therefore, is to demonstrate the benefits of
such techniques within a geophysical framework.

The mantle, the region between Earth’s crust and core, contains 84 percent of
Earth’s volume and 68 percent of its mass, but because it is separated from direct
observation by the thin crust there are many unsolved problems. Mantle convection
establishes one of the longest time scales of our planet. Earth’s mantle, though solid, is
deforming slowly by a process of viscous creep and, while sluggish in human terms,
the rate of this subsolidus convection is remarkable by any standard. Indeed, it is
estimated that the mantle’s Rayleigh number, a dimensionless parameter quantifying
its convective instability, is of order 109 (Davies and Richards, 1992), generating flow
velocities of 2-10 cm yr21. Plate tectonics is the prime surface expression of this
convection, although, ultimately, all large-scale geological activity and dynamics of the
planet, such as mountain building and continental drift, involve the release of potential
energy within the mantle. Consequently, innovative techniques for simulating these
large-scale, infinite Prandtl number convective systems are of great importance.

Rather than simulate the whole mantle, which would require massively parallel
codes in 3D spherical geometry, this investigation focusses upon geologically active
regions along Earth’s surface, where the mantle interacts with Earth’s crust. Steady
state thermal convection is examined, at a mid-ocean ridge (MOR) and at a subduction
zone (SZ), problems that can be well approximated in 2D. A MOR is a long, elevated
volcanic structure, occurring at divergent plate margins along the middle of the ocean
floor. Such ridges form through the symmetrical spreading of two tectonic plates from
the ridge axis. SZ, on the other hand, occur at convergent plate margins, where Earth’s
tectonic plates move towards each other, with one plate subducting beneath the other
into Earth’s mantle. The geometry of a SZ is mapped out by the locations of
earthquakes and deep seismicity, with most present day SZs extending from trenches
on the ocean floor, at an angle ranging from near horizontal to near vertical, to a depth
of up to 700 km. Volcanoes tend to form < 100 km above the subducting slab, at the
volcanic arc, making SZs the most active tectonic locations on our planet.

Numerical simulations of these tectonic settings involve complex geometries,
complex material properties and complex boundary conditions. Such a combination
often yields unpredictable and intricate solutions, where narrow regions of
high-solution gradient are found embedded in a more passive background flow.
These high-gradient regions present a serious challenge for computational methods:
their location and extent is difficult to determine a priori, since they are not necessarily
restricted to the boundary layers of the domain. Furthermore, even if their location is
identified, with the current methods employed in the field, it is often impossible to

HFF
18,7/8

1016



resolve localized features. It is natural to think, therefore, that grid adaptivity, with a
posteriori error indication criterion, could play an important role in the development of
efficient solution techniques for such problems.

The present study extends on the work of Davies et al. (2007), which applied grid
adaptivity to infinite Prandtl number, thermal and thermo-chemical convection.
However, here, attention is focussed on geodynamical application, as opposed to
methodology formulation and validation. The aim is to improve the solution quality of
MOR and SZ simulations, by utilizing adaptive mesh refinement strategies. Results
illustrate that the method is advantageous, improving solution accuracy whilst
reducing computational cost.

The remainder of this paper will cover the equations governing mantle convection,
together with the numerical and adaptive strategies used in their solution. An overview
of the error indicator and remeshing technique is then provided and, to conclude, the
methodology is applied in geodynamical simulations of the tectonic settings
introduced above.

2. Methodology
2.1 Governing equations and solution procedure
Earth’s mantle is solid. However, over large timescales it deforms slowly through
processes such as dislocation and diffusion creep. As a consequence, motion within
Earth’s mantle can be described by the equations governing fluid dynamics. Since the
mantle has an extremely large viscosity (<1021 Pa), the equations governing mantle
convection are somewhat different to those governing the more typical fluid mechanics
problems:

. The large viscosity of Earth’s mantle makes the Prandtl Number (Pr), the ratio
between viscous and inertial forces, of the order 1024. Accordingly, inertial terms
in the momentum equation can be ignored.

. The Ekman number (i.e. the ratio between viscous and Coriolis forces) is of the
order 109, since the velocity of convection within the mantle is so small. As a
consequence, the Coriolis force can be neglected.

. The centrifugal force is proportional to the square of the velocity. Consequently,
it is even smaller than the Coriolis force and it is also ignored.

This mantle convection problem is formulated in terms of the conservation equations
of momentum, mass and energy, expressed for incompressible, Boussinesq convection,
in dimensionless, vector form:

72u ¼ 27pþ RaTk̂ ð1Þ

7 ·u ¼ 0 ð2Þ

›T

›t
þ u ·7T ¼ 72T ð3Þ

where u is the velocity vector, T is the temperature, p is the non-lithostatic pressure,
k̂ is the unit vector in the direction of gravity and t is the time. In addition, the
dimensionless parameter:
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Ra ¼
bgDTd 3

kn
ð4Þ

denotes the Rayleigh number, where g is the acceleration due to gravity, b is the
coefficient of thermal expansion, DT is the temperature drop across the domain, d is
the domain depth, k is the thermal diffusivity and v is the kinematic viscosity.

A widely used 2D geodynamics finite element program, CONMAN, which employs
quadrilateral elements and bilinear shape functions for velocity, is utilized to solve
these incompressible, infinite Prandtl number equations. The main characteristics of
the code are presented here, although a more detailed description can be found in
King et al. (1990). The continuity equation is treated as a constraint on the momentum
equation and incompressibility is enforced in the solution of the momentum equation
using a penalty formulation. The well known streamline upwind Petrov Galerkin
method is used to solve the energy equation (Hughes and Brooks, 1979) and an explicit
second order predictor corrector algorithm is employed for time marching. Since the
temperatures provide the buoyancy to drive the momentum equation and, as there is
no time dependence in the momentum equation, the algorithm to solve the system is
simple: given an initial temperature field, calculate the resulting velocity field. Use the
velocities to advect the temperatures for the next time step and solve for a new
temperature field.

2.2 Adaptive strategies
Over recent decades, unstructured grid systems have been developed and applied in
simulations of various computational fluid mechanics problems. The accuracy of a
computational solution is strongly influenced by the discretization of the space in
which a solution is sought. In general, the introduction of a highly dense distribution of
nodes throughout the computational domain will yield a more accurate answer than a
coarse distribution. However, limitations in computer processing speed and accessible
memory prohibit such a scenario. An appropriate alternative would be to improve the
accuracy of the computation where needed. Grid adaptation provides a suitable means
to do this, ensuring that grids are optimized for the problem under study. Broadly
speaking, such adaptive procedures fall into two categories:

(1) h-refinement, in which the same class of elements continue to be used, but are
changed in size to provide the maximum economy in reaching the desired
solution; and

(2) p-refinement, in which the same element size is utilized, but the order of the
polynomial is increased or decreased as required.

A variant of the h-refinement method, termed adaptive remeshing, is employed in this
study It provides the greatest control of mesh size and grading to better resolve the
flow features. The main advantages offered by such methods are (Lohner, 1995):

. the possibility of stretching elements when adapting features that are of lower
dimensionality than the problem at hand, which leads to considerable savings;
and

. the ability to accommodate, in a straightforward manner, problems with moving
bodies or free surfaces.
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In this method, the problem is solved initially on a coarse grid, noting that this grid
must be sufficiently fine to capture the important physics of the flow. Remeshing then
involves the following steps:

(1) The solution on the present grid is analyzed through an error indication
procedure, to determine locations where the mesh fails to provide an adequate
definition of the problem. An interpolation-based local error indicator is
employed in this study, based upon nodal temperature curvatures (Peraire et al.,
1987).

(2) Given the error indication information, determine the nodal spacing, d the value
of the stretching parameter, s and the direction of stretching, a for the new grid
(Figure 1).

(3) Using the old grid as a background grid, remesh the computational domain
utilizing a variant of the advancing front technique (George, 1971; Lo, 1985;
Peraire et al., 1987; Davies et al., 2007), which is capable of generating meshes
that conform to a user prescribed spatial distribution of element size (i.e. d,
a and s).

(4) Interpolate the original solution between meshes.

(5) Continue the solution procedure on the new mesh.

The remeshing process is repeated until the desired solution criteria are met.
2.2.1 The error indicator. To determine optimum nodal values for the mesh

parameters d, s and a, it is necessary to use the existing solution to give some
indication of the error magnitude and direction. A certain “key” variable must be
identified and then the error indication process can be performed in terms of this
variable. In this study, the error indicator is based on the temperature variable, T. Of
course, other variables (e.g. pressure) or any combination of variables (e.g. temperature
and velocity) could be chosen, depending upon the nature of the problem under
investigation.

A local error indicator, based upon interpolation theory, is employed here. Error
indicators of this nature make the assumption that the nodal error is zero, allowing one
to approximate the elemental error by a derivative one order higher than the element
shape function. We make use of this approach to refine the grid, by considering the

Figure 1.
The definition of the mesh

parameters a, s and d

α
δ

sd
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second derivatives, or curvatures, of T. Note that for the remainder of this section we
will restrict our discussion to the solution variable f, rather than refer to T explicitly.

Consider a one-dimensional situation in which the exact values of the key variable f
are approximated by a piecewise linear function f̂. The error, E, is then defined as:

E ¼ fðxÞ2 f̂ðxÞ ð5Þ

If the exact solution is a linear function of x, this error will vanish, as the
approximation has been obtained using piecewise linear finite element shape functions.
To a first order of approximation, the error, E, can be evaluated as the difference
between a quadratic finite element solution, f̂, and the linear computed solution. To
obtain a piecewise quadratic approximation, one could obviously solve a new problem
using quadratic shape functions. This, however, would be costly and an alternative
approach for estimating a quadratic approximation from the linear finite element
solution can be employed. Assuming that the nodal values of the quadratic and the
linear approximations coincide, i.e. that the nodal values of E are zero, a quadratic
solution can be constructed on each element, once the value of the second derivative is
known.

The variation of the error within an element, Ee, is then expressed as:

Ee ¼
1

2
zðhe 2 zÞ

›2f̂

›x 2
ð6Þ

where z denotes a local element coordinate and he denotes the element length (Peraire

et al., 1987). The root mean square value ERMS
e of this error over the element is

computed as:

ERMS
e ¼

Z he

0

E2
e

he
dz

( )1=2

¼
1ffiffiffiffiffiffiffi
120

p h2
e

›2f̂

›x 2

�����
�����
e

ð7Þ

where k denotes absolute value. Several previous studies (Demkowicz et al., 1984;
Peraire et al., 1987; Nithiarasu, 2000) have demonstrated that equidistribution of the
element error leads to an optimal mesh and in what follows we employ the same
criterion. This requirement implies that:

h2 ›2f̂

›x 2

�����
����� ¼ C ð8Þ

where C denotes a positive constant. Finally, the requirement of equation (8) suggests
that the optimal spacing d on the new adapted mesh should be computed according to:

d2 ›2f̂

›x 2

�����
����� ¼ C ð9Þ

Equation (9) can be directly extended to the 2D case by writing the quadratic form:

d2
bðmijbibjÞ ¼ C ð10Þ

HFF
18,7/8

1020



where b is an arbitrary unit vector, db is the spacing along the direction of b, and mij

are the components of a 2 £ 2 symmetric matrix, m, of second derivatives defined by:

mij ¼
›2f̂

›xi›xj
ð11Þ

These derivatives are computed at each node of the current mesh by using the 2D
equivalent of the variational recovery procedure. This procedure allows one to recover
the nodal values of second derivatives from the elemental values of the first derivatives
of f̂ (Zienkiewicz et al., 2006).

2.2.2 Adaptive remeshing. The basic concept behind the adaptive remeshing
technique is to use the computed solution to provide information on the spatial
distribution of mesh parameters. This information will be used by the mesh generator
to generate a new adapted mesh in those areas where the values of the optimal mesh
parameters, d, a and s, differ from the values of the current mesh parameters by
greater than a user prescribed tolerance, msh-tol, which is set as 0.5 percent in this
study.

Optimal values for mesh parameters are calculated at each node of the current mesh.
The directions ai; i ¼ 1, 2 are taken to be the principal directions of the matrix m. The
corresponding mesh spacings are computed from the eigenvalues li of m, as:

di ¼

ffiffiffiffi
C

li

s
; i ¼ 1; 2 ð12Þ

The spatial distribution of the mesh parameters is defined when a value is specified for
the constant C. The total number of elements in the adapted mesh will depend upon the
choice of this constant. The magnitude of the stretching parameter, s, at node n, is
simply defined as the ratio between the two spacings:

sn ¼

ffiffiffiffiffiffiffiffiffi
jd1nj

jd2nj

s
ð13Þ

where d1n and d2n are the spacings in principal direction 1 and 2, respectively.
In the practical implementation of this method, two threshold values are used: a

minimum spacing, dmin, and a maximum spacing, dmax, with:

dmin # di # dmax ; i ¼ 1; 2 ð14Þ

It is apparent that in regions of uniform flow, the computed values of dn will be very
large. Consequently, the user must specify a maximum allowable value, dmax, for the
local spacing on the new mesh. Then, if dn is such that dn $ dmax , the value of dn is set
to dmax. Similarly, the user prescribes a maximum allowable stretching ratio on the
new mesh.

The new mesh is generated according to the computed distribution of mesh
parameters, using a variant of the advancing front technique (Peraire et al., 1987). The
original solution is then transferred onto the new mesh using linear interpolation and
the solution procedure continues on the new mesh. It should be noted that the increase
in definition of flow features is achieved by decreasing the value of dmin. The value of

Adaptive finite
element methods

1021



dmin is therefore the major parameter governing the number of elements in the new
mesh. The methodology employed in this study has previously been validated by
Davies et al. (2007).

3. Geodynamical applications
3.1 Mid-ocean ridge magmatism
A significant body of work has been published on the numerical modeling of MOR. For
example, Buck et al. (2005) use numerical models to study modes of faulting at ridges,
Kuhn and Dahm (2004) employ numerical models to study magma (i.e. molten rock)
ascent beneath ridges, while Albers and Christensen (2001) study the channeling of
plumes below ridges. While these models were designed to investigate specific
processes at ridges, incorporating complex material properties and boundary
conditions, we present a simple, generic, passive (buoyancy forces are neglected)
MOR model, utilizing our results to demonstrate the benefits of grid adaptivity.

3.1.1 Model geometry and boundary conditions. The model presented does not
incorporate the entire convecting mantle. Instead, we focus on the region directly
adjacent to a MOR. Our results are derived from simulations in a rectangular domain of
height 1, which in our application to a MOR represents 500 km, and width 5
( ¼ 2,500 km), x being non-dimensionalized, x 0, as:

x 0 ¼
x

l0
ð15Þ

where l0 ¼ 500 km. By limiting the vertical and horizontal extent of the domain,
computational expenditure is reduced, allowing one to accurately resolve the flow
details contiguous to plate boundaries. The main drawback of this technique is that
flow must be permitted through the lower and side boundaries of the model; these
boundary conditions are therefore specified in such a way as to mimic the effect of the
full convecting system on the smaller region under study (Figure 2).

Plate motion is prescribed as a kinematic boundary condition at the upper surface.
A non-dimensional velocity, equivalent to 5 cm yr21, is chosen, utilizing the
non-dimensional relation:

y 0 ¼
y l0

k
ð16Þ

where k denotes thermal diffusivity, taken as 1 £ 1026m2s21. Time is
non-dimensionalized by the conductive time scale:

t0 ¼
tk

l20
ð17Þ

The model makes no attempt to account for forces that move the plate. The new plate
that is continuously created within the model is disposed of by a prescribed rate of flow
through the outer boundary. This in turn is replaced by material from the side and
lower boundaries. Material properties are uniform throughout the domain, there are no
internal heat sources and the Rayleigh number is set to zero.

3.1.2 Results. We find that the broad patterns observed in previous studies are
reproduced (Figure 3). With flow driven kinematically by surface “plate” motion, the
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system evolves to approach a steady state. This typically involves the development of
a cold “plate” thickening with age at the surface, with flow beneath focusing heat
directly towards the ridge axis (i.e. the upper center of our model). This “plate” is
particularly well captured in our simulations, as a direct consequence of the adaptive
methodologies utilized. It is necessary, therefore, to provide a brief run through the
evolution of the calculation, to illustrate the benefits of grid adaptivity. Having
obtained an initial solution on a coarse grid (Figure 4 – Stage 1b), mesh adaptation was
invoked to resolve, in more detail, the temperature profile encountered. The solution
was analyzed via the error indication procedure and the domain remeshed, utilizing the
information yielded by this error indicator (the generation parameters dMin; dMax; sMax

and C displayed in Table I) to control the regeneration process. The ensuing grid is
shown in Figure 4 (Stage 2a). Note that nodes have automatically clustered around

Figure 2.
A summary of the

boundary conditions
utilized in our mid-ocean
ridge model, where MBC

denotes the mechanical
boundary conditions

X

Y

X

Y

T = Insulating
MBC = Stress Free

T = Insulating
MBC = Stress Free

T = 0 (Fixed)
MBC = Specified

T = 1 (Fixed)
MBC = Stress Free

Notes: Stress free conditions, i.e. no normal or shear stress, are employed at the lower and side
boundaries, with prescribed velocities (kinematic) on the upper boundary, the non-dimensional
equivalent of 5 cm Yr–1. Temperatures are fixed on upper (T = 0) and lower (T = 1) boundaries with
insulating sidewalls

The Ocean Floor

Figure 3.
The thermal field

generated by our MOR
simulations

1

Notes: Red is hot (T = 1), blue is cold (T = 0) and the color scale is linear. A series of
stream-traces are included, indicating the flow field behaviour

0
0 5
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zones of high-temperature gradient, at the surface and immediately below “plate”
boundaries.

The solution procedure continued on this new mesh, producing the thermal field
shown in Figure 4 (Stage 2b). It is clear, even visually, the solution on this grid is far better
resolved than that shown in Figure 4 (Stage 1b), with contours more steady and consistent.
However, by examining the thermal field close to the ridge axis (Figure 5 – Stage 2b) it
becomes apparent that the problem remains inadequately defined. Consequently, one
further remeshing loop was invoked, producing the mesh shown in Figure 4 (Stage 3a).
The simulation was terminated once the solution was deemed to have converged on
this mesh. Final temperature contours are shown in Figures 4 and 5 (Stage 3b).

With each remeshing, the benefits of the multi-resolution solution permitted by the
adaptive methodologies can be appreciated. Within the upper thermal boundary layer,
where temperature contours are extremely compact and gradients are high, a large
number of nodes is required to generate an accurate solution. Since the lower reaches of

Figure 4.
Evolution of the
temperature field
(b) on a series of adapted
grids (a)

1

Stage 1

0 5

1

0 5

1

Stage 2

0 5

1

0 5

1

Stage 3

Notes: Red is hot (T = 1), blue is cold (T = 0), and the contour spacing is 0.05, although contour values
are not fundamental to this figure. Its main purpose is to illustrate how nodes cluster around zones of high
temperature gradient at the surface. Note that the coordinate scales are distorted, with x: y = 0.5

(a) (b)
0 5

1

0 5

Stage Elements Nodes dmin dmax smax C

1 4,096 4,225 – – 5 –
2 12,965 13,259 0.01 0.1 5 0.05
3 22,790 23,263 0.005 0.1 5 0.03

Notes: It should be noted that the initial mesh (Stage 1) was generated via a simple uniform mesh
generator, as opposed to the advancing front generator typically employed throughout this study

Table I.
The sequence of meshes
and mesh generation
parameters employed for
the mid-ocean ridge
simulations
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the model are more passive, with reduced solution gradients, the number of nodes
required for accuracy is significantly less. The proposed method automatically ensures
that an “optimal” mesh is generated, with zones of fine resolution being analogous to
zones of high-solution gradient. Consequently, the thermal field can be adequately
resolved.

As a quantitative test of the method, we have computed heat flow as a function of
ocean floor age, at each stage of the calculation (i.e. for converged solutions on each
grid). The results are shown in Figure 6, alongside data derived from a cooling
half-space model (Turcotte and Schubert, 2002) which is an analytical approximation
to the problem, and data obtained from a simulation utilizing a fully uniform,
structured mesh of almost 30,000 elements (SM in Figure 6). An exceptional agreement
is observed between all data sets beyond <1Myr (Myr ¼ million years). This accord,
however, disappears within <1Myr of the ridge axis. Here, the half-space model tends
towards infinity, whereas our simulations converge towards a finite value, as indeed
would be expected from the physics of the numerical problem. Nevertheless, this graph
provides a simple way to illustrate the benefits of the proposed methodology.
Simulation results show sequentially improving agreements with the half-space model
as one refines the grid from Stages 1 to 3. Results track the analytical solution closer to
the ridge axis, culminating in successively higher values at the axis itself. This is a
direct consequence of the improved resolution inherent to the adaptive methodologies
utilized. At the ridge axis itself, the true numerical solution is extremely difficult to
reproduce. However, what is clear from this graph is that the adaptive methodologies
employed significantly improve solution quality. The results from a fully uniform
structured mesh, albeit with more degrees of freedom, are not competitive with those
obtained using the adapted grids.

Figure 5.
As in Figure 4, but at
higher magnification,

close to the ridge axis

1

Stage 1

0.9
2.3 2.5 2.7

1

0.9
2.3 2.5 2.7

1

Stage 2

0.9
2.3 2.5 2.7

1

0.9
2.3 2.5 2.7

1

Stage 3

0.9
2.3 2.5 2.7

1

0.9
2.3 2.5 2.7

(a) (b)
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In addition to increasing solution accuracy, the adaptive refinement strategies are
computationally highly efficient. As regards to the MOR simulations presented here,
for a specified level of accuracy a uniform mesh simulation expends approximately 20
percent more CPU time than an adaptive mesh simulation, with figures for the adaptive
case including the time allocated for remeshing. The generation of a new optimal mesh
is an inexpensive procedure, typically taking between 15 and 20 time-steps, compared
to the time taken for one time step with a fixed mesh. It should be noted however that
the time expended in remeshing can be decreased significantly by specifying a larger
remeshing tolerance, msh _tol.

3.2 Subduction zone magmatism
As is the case with MOR, numerical models have become central in shaping our
understanding of SZ dynamics and thermal structures. Andrews and Sleep (1974) use
numerical models to demonstrate that frictional heating along the subducting plate is
not likely to produce enough heat to melt the slab. Davies and Stevenson (1992) cite
numerical models as primary evidence to suggest that the oceanic crust of the down
going slab is not melted extensively, if at all, and, hence is not the source of SZ
magmatism, with the possible exception of the special case of very young oceanic
crust, which is hotter. Numerical simulations have also been developed for studies of
SZ mineralogy and metamorphism (Peacock, 1996), transportation of water and its
influence on melting (Iwamori, 1998), the thermal and dynamic evolution of the upper
mantle in SZ (Kincaid and Sacks, 1997), and the effects of chemical phase changes on
the downwelling slab (Christensen, 2001). It is important to note that the SZs discussed
here have an idealized geometry. The terminology used in describing such SZs is
shown in Figure 7.

Figure 6.
Plot of computed heat flow
against age relation for
our MOR models and the
cooling half-space model
for k ¼ 3.3 Wm21 K21

0

250

500

750

1,000

1,250

0 2 4

Notes: A clear divergence is observed between the computed solution and the cooling half-space.
However, as the grid becomes more and more refined, through the adaptive procedures, this divergence
decreases dramatically. Note that SM represents the solution obtained on a fully uniform structured mesh.
It is included for comparative purposes only

6 8 10

Age (Myr)

H
ea

t F
lo

w
 (

M
W

 m
–2

)

Half_Space
Stage_3
Stage_2
Stage_1
SM
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A basic isoviscous flow model is presented which is used to demonstrate the benefits of
grid adaptivity within a SZ context. It is common knowledge that the most difficult
region to resolve in any SZ model is the area between the subducting slab and the
overriding plate, commonly known as the mantle wedge corner, as a direct
consequence of a singularity at the intersection between slab and plate. Since, the most
geologically important processes in SZ occur here, models of wedge flow need to be
carefully constructed. Previous studies have achieved higher resolution in this area by
a priori generating a mesh with a large number of nodes clustered in the wedge (Davies
and Stevenson, 1992). However, this is not ideal. Grid adaptivity provides a suitable
alternative, allowing one to automatically generate an optimal mesh, utilizing a
posteriori error indication procedures, ensuring that nodes are positioned where
required. Such techniques could therefore play an important role in future solution
strategies for these models, for both the steady state simulations considered here and
more complex unsteady problems.

3.2.1 Model geometry and boundary conditions. We do not simulate the entire
convecting mantle. Instead, we focus on the region directly adjacent to a generic SZ.
The results of calculations using a box of 3 £ 2 non-dimensional units are presented,
which is equivalent to 600 £ 400 km. Boundary conditions are shown in Figure 8.
Table II shows the sequence of meshes and mesh generation parameters employed for
subduction zone simulation. We shall distinguish two lithospheres. First, a mechanical
lithosphere, which will be considered to be the rigid part of the plate on the time scale of
the process, and, second, a thermal lithosphere, which is Earth’s upper thermal
boundary layer. The descending slab is prescribed by a kinematic boundary condition

Figure 7.
The geometry of

a generic SZ

Subducting
Slab

Overriding Plate

Wedge
Corner

Mantle
Wedge

Notes: Note that by overriding plate we mean the rigid lithosphere. By wedge
corner we mean the apex at which the overriding plate and slab meet
Source: Davies and Stevenson (1992)

TrenchVolcanic Arc

Incoming Plate
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as a non-migrating slab dipping uniformly at 608. The subduction velocity is set to the
non-dimensional equivalent of 9 cm yr21. These velocities are also prescribed to
the incoming plate. A zero velocity condition is specified at certain nodes to model the
mechanical lithosphere of the overriding plate, corresponding to a thickness of 50 km.
This restricts them from participating in the viscous flow region. The thickness of the
mechanical lithosphere of the downgoing plate is taken to be the same as the
overriding plate (i.e. 50 km). The side and lower domain boundaries are prescribed with
velocities derived from the analytical solution to a Newtonian corner flow problem
(McKenzie, 1969). Indeed, by setting the model up in this way, a direct comparison can
be made between simulated velocities and those of the analytical solution. This allows
a quantitative demonstration into the benefits of grid adaptivity to SZ simulations.
Temperature boundary conditions are slightly more complex. The temperature is fixed
at the surface (T ¼ 0) and a zero heat flux condition is specified at the base of the
model. On the continental side, i.e. the overriding plate, the thermal boundary layer is
assumed to be 100 km thick. Within this layer, it is assumed that vertical heat transfer
is practically by conduction alone and that steady state conditions prevail. The
temperature profile is, therefore, represented by a linear temperature gradient, with the
temperature at the base of this layer assumed to be 1,3508C, or T ¼ 1 in
non-dimensional units, and the temperature at the top, i.e. the surface of the overriding
plate, assumed to be 08C, or T ¼ 0 in non-dimensional units. The situation on the
oceanic side, i.e. the incoming plate, is slightly different. The oceanic plate is created at

Stage Elements Nodes dmin dmax smax C

1 7,333 7,499 0.06 0.06 1 –

2 17,876 18,131 0.02 0.04 3 0.2
3 20,906 21,157 0.01 0.04 3 0.1

Table II.
The sequence of meshes
and mesh generation
parameters employed for
the subduction zone
simulations

Figure 8.
A composite diagram
illustrating the boundary
utilized in the subduction
zone model
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the axis of a mid-ocean ridge and cools as it moves away from the ridge axis, as was
shown in Figure 3. The temperature profile within the incoming plate can, therefore, be
approximated, by a standard error function, consistent with a plate of age 40 Ma
(Carlsaw and Jaeger, 1959), as:

Tð yÞ ¼ T ðsÞ þ {TðmÞ 2 TðsÞ}erf
y

2
ffiffiffiffiffiffiffiffi
kt40

p

� �
ð18Þ

where t40 is the age of the plate in seconds, T(s) is the surface temperature, T(m) is the
mantle temperature and k is the thermal diffusivity, which is assumed to be
1026 m2s21. The thermal boundary layer is assumed to be 100 km thick with
temperatures at its top and base taken as T ¼ 0 and T ¼ 1, in non-dimensionalized
units, respectively.

Convection is believed to be the dominant mode of heat transfer in the upper mantle,
beneath the thermal boundary layers. Consequently, the temperature gradient is lower.
In the interior of a vigorously convecting fluid, the mean temperature gradient is
approximately adiabatic. Considering the adiabatic temperature gradient of the
uppermost mantle (Turcotte and Schubert, 1982) and the depth of the box, i.e. 400 k m,
a temperature of 1,4708C is specified at the bottom left and right corners of the box,
which, in non-dimensionalized units, is <1.09. The temperature increases linearly from
the base of the thermal boundary layer to this point. There are no explicit heat sources
or sinks within the model.

3.2.2 Results. Results are shown in Figure 9. They are broadly consistent with
previous SZ models, with the thermal field being characterized by rapid temperature
variations over the solution domain, predominantly along the margins of the
subducting plate and in Earth’s upper thermal boundary layer. However, these results
are not central to our study. It can be shown from Figure 9 that the adaptive procedure
has refined the grid at locations of high-temperature gradient, without overloading the
remainder of the domain (note that a preset element size is specified for nodes in the
upper mechanical lithosphere and the down going slab, since velocities here are
prescribed). Such grid refinement has a dramatic effect on solution accuracy. This is
shown in Figures 10 and 11, which display the discrepancy between simulated
velocities and those yielded by the analytical solution. This local error, EL, is
calculated as:

EL ¼
jVM 2 VAj

jVAj
ð19Þ

where VM denotes simulated velocities, VA the velocities yielded by the analytical
solution and j · j absolute value. The improvements yielded by grid adaptivity are clear
to see. On the initial mesh (Stage 1), the error is extremely prominent, emanating from
its source at the mantle wedge corner and strongly degenerating the solution over a
large section of the wedge. A minor error is also visible at the corner underlying where
the incoming plate descends to become the down going slab, although it is small in
comparison to that observed in the wedge corner. By Stage 2, the re-meshing process
has refined the grid considerably in these regions and, consequently, a substantial
decrease in error is observed. An additional reduction in error also occurs in Stage 3, as
the grid becomes further refined at these locations. Even though the effects of the
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singularity are not fully nullified, its influence is severely restricted by the grid
refinement procedure. The point is reinforced by examining the mean global error, EG,
calculated as:

EG ¼

R
V
ELdVR
V
dV

ð20Þ

Results are presented in Table III, demonstrating quantitatively that the refinement
process undoubtedly has a positive influence on the global error. As the grids are
adapted a dramatic decrease in error is observed. This is particularly true for the first
remeshing, where EG decreases by a factor of 4.5.

In summary, the adaptive strategies employed have significantly improved solution
accuracy for the SZ simulations presented here. The refinement process has severely
restricted the influence of the intersection singularities and, consequently, solution
accuracy throughout the domain is improved. Results suggest that an extension of this
work to models with more realistic mantle rheologies, i.e. material properties, together

Figure 9.
(a) The steady state
thermal field yielded by
our SZ simulations. Red is
hot (T ¼ 1.09), blue is cold
(T ¼ 0) and the color scale
is linear. Note that the slab
remains cool throughout,
while the mantle wedge
corner heats up
significantly. The dark
lines traversing the
solution domain are
velocity stream-traces,
included to provide an
indication of the direction
of motion (b) The final
adapted mesh
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Figure 10.
(a) The series of adapted

grids; (b) The discrepancy
between simulated and

analytical velocities, EL;
(c) A high resolution

image of this error in the
mantle wedge corner
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Figure 11.
High resolution contour
plots of the solution error,
EL, in the mantle wedge
corner. Contour values
range between 0.1 and 0.9,
at a contour spacing on
0.2: (a) represents the
solution error obtained on
the initial grid; (b) the error
after 1 remeshing, while;
(c) represents the final
error, i.e. after 2
remeshings
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with more Earth like surface plate behavior, incorporating solidification and
localization phenomena, would be a worthwhile exercise. A true understanding of this
system will only be gained by studying coupled crustal/mantle models. Such models
naturally require fine resolution within the crust, where the plates fracture, bend and
buckle, and coarser resolution as one descends into the mantle, where deformation
occurs on a much larger scale. Error-guided grid adaptivity should therefore be an
invaluable tool in simulating such dynamic systems.

4. Conclusions
An adaptive finite element procedure has been applied in simulations of two separate
geo-dynamical processes-fluid flow at a MOR and at a SZ. The method has refined the
locations of thermal boundary layers wherever they are strong, at the ridge itself and
along Earth’s surface (MOR), and in the mantle wedge, along the margins of the
descending plate and at Earth’s surface (SZ). The adapted grids maintain good solution
accuracy and, through a series of remeshings, display the ability to gradually improve
solution quality, without significantly increasing the total number of unknowns at each
stage. The advocated methods are computationally highly efficient, expending
approximately 20 percent less CPU time than uniform mesh simulations, for a specified
level of accuracy.

This investigation suggests that coupling adaptive strategies to more complex
models will lead to a new class of geodynamical simulation, yielding greater insights
into the intricate processes at work within Earth’s interior. With the methods currently
employed in the field, such insights are beyond our capabilities. However, memory
efficient numerical techniques, such as the adaptive strategies presented here,
will ensure that research is not unnecessarily restricted by computer power. It is
therefore of great importance that the geodynamical community begins to implement
such schemes.
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